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Multisoliton propagation in a linear granular chain
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When m grains hit a linear Hertzian chain of identical graims,solitons are generated. We studied the
multisoliton propagation using a particle dynamic simulation. The speed of solitons depends not only on the
number of colliding grains but also on the sequence of generation. We found the hierarchy and evolution of the
solitons as well as the generation of secondary solitons. We also found the oscillation and beats in the kinetic
energy of the chain, which come from the discreteness of the medium in comparison with the spatial spreading
of the soliton.
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I. INTRODUCTION Hertzian contact force of spherical objeft3 and itsP value
is
One of the simplest granular systems might be the one-
dimensional chain of monosized elastic spheres. But the sys- p— 2Y \/E e
tem is already complex enough due to the interactions of the - 3(1-¢?) V2

adjacent spheres. The interaction of two contacting spheres is

nonlinear to compression. Even if the spheres are made afhereY is Young’s modulusg is Poisson’s ratio, an® is
perfectly elastic material, the contact geometry of the spherethe radius of the spheres.

generates the nonlinearity. This kind of contact is called a Let us consider a linear chain of spheres which are touch-
Hertzian contacfl] and a one-dimensional array of Hertzian ing each other slightly. Each sphere will move according to

contacts a Hertzian chain. the following the set of equations of motion:

When a sphere collides with the chain, there arises a local N 0
compression which propagates along the chain. There ard"4 =PlUi—1—ui]"=Plui—uj4]",  1=23,... N-1.
two extreme cases. One is a linear approximation regime )

where the amphtude. of the compression wave 1S r.nucqnthe abovemis the mass of a sphere andis the displace-
smaller than the static compression already present in thl%ent of the center of thith sphere from its initial equilib-

chain. The wave in this case can be approximated to a nofr: " h K kes th e if it i
mal sound wave. The other case is a nonlinear limit Wherélum_posmon. T € b_rac et takes the argument va uet s

. S . . ositive. Otherwise it takes a value of zero. The first and
the amplitude is larger than the static compression. One e>§—

ample of this case is that when all the spheres are just touch-SCond terms on th? right-hand side of EZ).will vanish for
i=1 andN, respectively.

ing each other, i.e., the static compression is zero. In this . ,
2 : . The velocity of the compression wave generated by a col-
situation, all perturbations, no matter how small, will gener-. . = "~
I|rS|on is given by[7]

ate nonlinear wave. Nesterenko showed that the nonlinea
compression wave is a solitof2] as was verified by c=Co(n)(P/m)Y2A(-1)72, &)
experiment 3].

It is well known that when one sphere collides with the whereA is the amplitude of the compression wave ahgis
linear chain at one end, a sphere at the opposite side igconstant which is a function of When the force exponent
ejected from the chain. If two spheres collide, then twon is equal to 1, which is the normal linear wave case gov-
spheres will be ejected. How does the impact get transmittedrned by Hook’s law, the propagation velocitydoes not
through the chain? Single-soliton propagation in the Hertziarlepend on the wave amplitude. If we express the amplitude
chain was studied extensive[¢t]. On the other hand, the A in terms of the impact velocity, of the sphere using the
multisoliton problem, whereby two or more solitons simul- energy conservation equation,
taneously propagate along the chain, has not been studied
much[5,6]. In this work, we figure out what will occur when 1, pArtt
two or more spheres are colliding, and analyze the properties >Mve=— 7 )
of the compressive solitons generated.

we get the impact velocity dependence as

— 1/(n+1), (n—1)/(n+1)
Il. MODEL SYSTEM AND ANALYTIC RESULTS c=Cq(n)(P/m)¥"* 1)y { : 5

The elastic force between two contacting objects can b&here
expressed aB =P ", where$ is the overlap of contacts. If
nis 1, we get the normal Hook’s law of a linear spring ahd
is a spring constant. Whemis equal to 3/2, it becomes the

n+1 (n=1)/2(n+1)
Cy(n)=Co(n)| 5~ (®)
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FIG. 1. Compression wave propagation as a function of time. o, . .
The contact index starts from 0 to 48, with 50 spheres. See the text FIG. 2. Plot of the coefficieny(3/2) in Eq.(7) as a function of
for the simulation parameters. the number of colliding spheres. At one particular colliding sphere

number, the early generated solitons have larger coefficient values.

For the case of Hertzian contacts= 3), the velocity of the
compression wave becomes barrier in the chain. When another compression wave passes
through the barrier, there will be a scattering and variation of
velocity [4]. When multiple solitons propagate, one particu-
lar soliton experiences the compression or the dilafibe

In this study, we solve the equations of motion by directnoncontacting gap between the consecutive gyaifisthe
numerical simulation. We applied the fourth-order Gearchain which was made by its neighbors. We think that this
predictor-corrector algorithif8] to a 50-sphere chain. When scattering of overlapped potentials may cause the hierarchy
we needed more spheres for the velocity to settle down, wef the coefficient.
increased the grain number to 200. The simulation param- It is known that the boundary effect makes the compres-
eters are set t =10, m=1, and R=1. The infinitesimal  sional wave achieve its asymptotic velocity after it passes
integration time is set to 1¢f. five or six grains from the boundarf®]. We can see this
transient period from the trace which is labeled as 11 in Fig.
3. On the contrary, multisolitons have a much longer tran-
sient period. While the soliton generated earlier becomes
faster, the latter one becomes slower. This phenomenon is

When a sphere collides with the Hertzian chain, we foundsimilar to the interaction of two solitons of Korteweg-de
that the generated solitary wave has the same power expdries type[5].
nents with respect to the impact velocity and the material
constant as the continuum theory predicted. When two
spheres collide, two solitons are generated with some time
delay between them. Figure 1 shows the propagation of th8f
two solitons as a function of time and space. Its simulatio
parameters ar®=10, vg;=1, vg=1, and Ax,(t=0)
=0, where Ax;5,(t=0)=0 means that the two incoming

c=Co(3)(PIM)PAY=Cy(3)(PIm)?%035.  (7)

Ill. RESULTS

A. Velocity of solitons

B. Generation of secondary solitons

Figure 4a) shows the solitons generated by the collision
two slightly touching balls hitting the chain. Its magnified
rbicture, Fig. 4b), shows that the secondary soliton is gener-
ated at about the eighth contact from the impact point, and it
is detached from the two primary solitons at around the 22nd

spheres are just touching each other slightly.

following manner. After the first sphere starts to collide with

) . _ contact. We observed that this is the same point where the
The occurrence of the two solitons can be explained in the

the chain at=0, it is slowed down because of compression. 231
The second sphere collides with the first one which is slow- 22+
ing down. This second impact generates a second compres- 21 L 328
sion of the sphere. These two compressions propagate and a0l - }'\
develop two solitary waves. ! .\ .
These two solitons have the same power dependence on 1933 . I
the impact velocity and the material constants as in the case 1.8 1( N
of one colliding sphere. But the velocities are different for 170 ‘o \
the one and two colliding sphere cases even though we keep . L L1
the impact velocity the same. The difference comes from the 015 020 025 030 035 040
- V3N Max Compression &
fact that the coefficienC)(3) in Eq. (7) depends on the ma
number of colliding spheres and the sequential occurrence of FiG. 3. Traces of maximum compression and its velocity at each
the collisions. Figure 2 shows the hierarchical form of thecontact point. The first value in the two-digit index represents the
coefficients. number of colliding spheres and the second one represents the se-

If there is inhomogeneity such as local compression oguence of generation. For example, the index 32 represents the
mass difference, there will be an effective local potentialsecond generated soliton from the collision of three spheres.

Soliton Velocity

X
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FIG. 4. (a) The propagation of two compression waves after two 0.0 ﬂ,gtu»g AN

spheres collide with the chain with initial gapx,,(t=0)=0. (b)
Magnified picture of(a). (c) Except forAx,;,(t=0)=0.3, the other
conditions are the same é&. (d) Magnified picture ofc).

17 18 19 20 21 22 23 24 25 26
(b) Index of Spheres

FIG. 6. (a) Kinetic energy of the chain along which a soliton
propagates. The inset is an expanded figure for one full cyigle.
Velocities of each of the spheres where the soliton passes at three
different times corresponding & b, andc in (a).

velocity of the second soliton starts to decrease. Figice 4
has the same simulation conditions(asexcept for the ini-
tial gap of the two colliding grains, which is nowx;(t
=0)=0.3. With finite Ax, the second impact is made with
an additional time delay after the first one. Eventually, this _ ) )
additional time delay makes the two solitons have larger ini2ction is decreased as the separation of the two solitons in-
tial spatial distance as compared with the no-gap case. [{&€ases.

magnified picturgd) with resolution the same db) shows

that there are much smaller but still noticeable secondary C. Beats in energy

Wal\;ev?/és reported that when two oppositely directed identi- We checked the energy and momentum conservation in
P pp y our numerical study. The total energy and momentum are

cal solitons collide in the center of the chain, there appear : I .
. : . . onserved as expected. We find, however, oscillations in both
secondary solitons which are weaker in magnitude and muc S ) . : )
e kinetic and potential energies. Figur@gshows the ki-

slower than the primary ond§]. Our results show that the . ilation during th . ¢ i
generation of this secondary soliton is a general phenomend?ftic €nergy oscillation during the propagation of a soliton
.along the chain. As previously mentioned, the boundary ef-

which does not require two oppositely directed identical soli ' ! ] “Y
tons. Only a slight touching of two propagating solitons isfegt which appears as a transient part in the oscillation
sufficient. In Fig. 5, the velocities of the two solitons ap- Quickly fades out. The inset of the figure shows one full
proach that of a single soliton @sx;,(t=0) increases. But, period of steady oscillation. Figurgl§ shows the velocity
the distance required for the solitons to reach their final veprofiles of the spheres at each time correspondirg kpand
locity becomes longer. This implies that the repulsive inter- in Fig. 6@). Two consecutive spheres indexed as 21 and 22
have most of the positive velocity throughout the chain. The

- constraint of momentum conservatiol p; = const, makes
2201 "~ o . . .
e the kinetic energy have its minimum value when the veloci-
z 2.15F e ties are evenly distributed. In our example of Figh)6 the
S 210} ‘*‘*‘*‘*‘;::5; more evenly distributed velocity profile which has a label
= o0s5k /./' makes the total kinetic energy a minimum. The most uneven
2 : /° distributions at points and ¢ correspond to the maximum
3 200r . kinetic energy. This energy oscillation comes from the rela-
195 ./ tive discreteness of the chain with respect to the wavelength
00 02 04 06 08 of the_soliton. Until now, th_e continuum approximatiqn and
Ax__(t=0) analytic wave form analysis have not shown this discrete-
12V

ness. Since the wiggle in energy occurs during the time it
FIG. 5. As the initial gapAx,,(t=0) increases, all the velocities takes for the maximum compression to pass over two adja-
of solitons approach the value for the one-ball collision case. Th&ent spheres, the frequency of the kinetic energy oscillation
upper one is the first generated soliton, and the lower one is this related to the velocity of the soliton as-f\, wheref is
second generated one. the frequency of the energy oscillation ands the effective
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when two solitons propagate they have two different veloci-
ties, whether they had the same initial value or not. These
different velocities will give rise to the oscillations of kinetic
energy with different frequencies. Two neighboring fre-
quency oscillations make beats as a function of the differ-
ence in frequencies. Figure 7 shows the beats which are gen-
erated during the propagation of two solitons.
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The multisoliton propagation problem in a linear Hertzian
system shows various effects which were not seen in the
propagation of a single soliton. After the boundary effect
0.500 ] faded out, there exist some additional phenomena such as
. : . , — L , , , : secondary soliton generation, the repulsion of two solitons,
¢ 5 10 s 20 0 5 10 15 20 and a hierarchy in the velocity coefficient. We delineate these

Time t as coming from the interaction between the two solitons.
FIG. 7. Beats of kinetic energy when two solitons propagateAnd we find a kinetic energy oscilla’gion, Which_comes fr_om
along the chain with four different initial conditionga) Axq,(t the dlscre_t_eness of the granular chain. .TW(.) solitons of differ-
=0)=0, (b) Ax;(t=0)=0.1, (c) Ax;(t=0)=0.2, and (d) ent velocities make beats. These oscillations and beats are

0.55

Axx(t=0)=0.3. generic to a granular chain.

wavelength of the soliton in the -energy transfer process. ACKNOWLEDGMENTS
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