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Multisoliton propagation in a linear granular chain
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~Received 13 October 2002; published 25 June 2003!

When m grains hit a linear Hertzian chain of identical grains,m solitons are generated. We studied the
multisoliton propagation using a particle dynamic simulation. The speed of solitons depends not only on the
number of colliding grains but also on the sequence of generation. We found the hierarchy and evolution of the
solitons as well as the generation of secondary solitons. We also found the oscillation and beats in the kinetic
energy of the chain, which come from the discreteness of the medium in comparison with the spatial spreading
of the soliton.
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I. INTRODUCTION

One of the simplest granular systems might be the o
dimensional chain of monosized elastic spheres. But the
tem is already complex enough due to the interactions of
adjacent spheres. The interaction of two contacting spher
nonlinear to compression. Even if the spheres are mad
perfectly elastic material, the contact geometry of the sphe
generates the nonlinearity. This kind of contact is calle
Hertzian contact@1# and a one-dimensional array of Hertzia
contacts a Hertzian chain.

When a sphere collides with the chain, there arises a lo
compression which propagates along the chain. There
two extreme cases. One is a linear approximation reg
where the amplitude of the compression wave is mu
smaller than the static compression already present in
chain. The wave in this case can be approximated to a
mal sound wave. The other case is a nonlinear limit wh
the amplitude is larger than the static compression. One
ample of this case is that when all the spheres are just to
ing each other, i.e., the static compression is zero. In
situation, all perturbations, no matter how small, will gen
ate nonlinear wave. Nesterenko showed that the nonlin
compression wave is a soliton@2# as was verified by
experiment@3#.

It is well known that when one sphere collides with t
linear chain at one end, a sphere at the opposite sid
ejected from the chain. If two spheres collide, then t
spheres will be ejected. How does the impact get transmi
through the chain? Single-soliton propagation in the Hertz
chain was studied extensively@4#. On the other hand, the
multisoliton problem, whereby two or more solitons simu
taneously propagate along the chain, has not been stu
much@5,6#. In this work, we figure out what will occur whe
two or more spheres are colliding, and analyze the prope
of the compressive solitons generated.

II. MODEL SYSTEM AND ANALYTIC RESULTS

The elastic force between two contacting objects can
expressed asF5Pdn, whered is the overlap of contacts. I
n is 1, we get the normal Hook’s law of a linear spring andP
is a spring constant. Whenn is equal to 3/2, it becomes th
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Hertzian contact force of spherical objects@1# and itsP value
is

P5
2Y

3~12s2!
AR

2
, ~1!

whereY is Young’s modulus,s is Poisson’s ratio, andR is
the radius of the spheres.

Let us consider a linear chain of spheres which are tou
ing each other slightly. Each sphere will move according
the following the set of equations of motion:

mui95P@ui 212ui #
n2P@ui2ui 11#n, i 52,3, . . . ,N21.

~2!

In the above,m is the mass of a sphere andui is the displace-
ment of the center of thei th sphere from its initial equilib-
rium position. The bracket takes the argument value if it
positive. Otherwise it takes a value of zero. The first a
second terms on the right-hand side of Eq.~2! will vanish for
i 51 andN, respectively.

The velocity of the compression wave generated by a c
lision is given by@7#

c5C0~n!~P/m!1/2A(n21)/2, ~3!

whereA is the amplitude of the compression wave andC0 is
a constant which is a function ofn. When the force exponen
n is equal to 1, which is the normal linear wave case go
erned by Hook’s law, the propagation velocityc does not
depend on the wave amplitude. If we express the amplit
A in terms of the impact velocityv0 of the sphere using the
energy conservation equation,

1

2
mv0

25
PAn11

n11
, ~4!

we get the impact velocity dependence as

c5C08~n!~P/m!1/(n11)v0
(n21)/(n11) , ~5!

where

C08~n!5C0~n!S n11

2 D (n21)/2(n11)

. ~6!
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For the case of Hertzian contacts (n5 3
2 ), the velocity of the

compression wave becomes

c5C0~ 3
2 !~P/m!1/2A1/45C08~

3
2 !~P/m!2/5v0

1/5. ~7!

In this study, we solve the equations of motion by dire
numerical simulation. We applied the fourth-order Ge
predictor-corrector algorithm@8# to a 50-sphere chain. Whe
we needed more spheres for the velocity to settle down,
increased the grain number to 200. The simulation par
eters are set toP510, m51, and 2R51. The infinitesimal
integration time is set to 1024.

III. RESULTS

A. Velocity of solitons

When a sphere collides with the Hertzian chain, we fou
that the generated solitary wave has the same power e
nents with respect to the impact velocity and the mate
constant as the continuum theory predicted. When
spheres collide, two solitons are generated with some t
delay between them. Figure 1 shows the propagation of
two solitons as a function of time and space. Its simulat
parameters areP510, v0151, v0251, and Dx12(t50)
50, where Dx12(t50)50 means that the two incomin
spheres are just touching each other slightly.

The occurrence of the two solitons can be explained in
following manner. After the first sphere starts to collide w
the chain att50, it is slowed down because of compressio
The second sphere collides with the first one which is slo
ing down. This second impact generates a second comp
sion of the sphere. These two compressions propagate
develop two solitary waves.

These two solitons have the same power dependenc
the impact velocity and the material constants as in the c
of one colliding sphere. But the velocities are different f
the one and two colliding sphere cases even though we k
the impact velocity the same. The difference comes from

fact that the coefficientC08(
3
2 ) in Eq. ~7! depends on the

number of colliding spheres and the sequential occurrenc
the collisions. Figure 2 shows the hierarchical form of t
coefficients.

If there is inhomogeneity such as local compression
mass difference, there will be an effective local poten

FIG. 1. Compression wave propagation as a function of tim
The contact index starts from 0 to 48, with 50 spheres. See the
for the simulation parameters.
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barrier in the chain. When another compression wave pa
through the barrier, there will be a scattering and variation
velocity @4#. When multiple solitons propagate, one partic
lar soliton experiences the compression or the dilation~the
noncontacting gap between the consecutive grains! of the
chain which was made by its neighbors. We think that t
scattering of overlapped potentials may cause the hiera
of the coefficient.

It is known that the boundary effect makes the compr
sional wave achieve its asymptotic velocity after it pas
five or six grains from the boundary@9#. We can see this
transient period from the trace which is labeled as 11 in F
3. On the contrary, multisolitons have a much longer tra
sient period. While the soliton generated earlier becom
faster, the latter one becomes slower. This phenomeno
similar to the interaction of two solitons of Korteweg-d
Vries type@5#.

B. Generation of secondary solitons

Figure 4~a! shows the solitons generated by the collisi
of two slightly touching balls hitting the chain. Its magnifie
picture, Fig. 4~b!, shows that the secondary soliton is gen
ated at about the eighth contact from the impact point, an
is detached from the two primary solitons at around the 22
contact. We observed that this is the same point where

.
xt FIG. 2. Plot of the coefficientC08(3/2) in Eq.~7! as a function of
the number of colliding spheres. At one particular colliding sph
number, the early generated solitons have larger coefficient va

FIG. 3. Traces of maximum compression and its velocity at e
contact point. The first value in the two-digit index represents
number of colliding spheres and the second one represents th
quence of generation. For example, the index 32 represents
second generated soliton from the collision of three spheres.
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velocity of the second soliton starts to decrease. Figure~c!
has the same simulation conditions as~a! except for the ini-
tial gap of the two colliding grains, which is nowDx12(t
50)50.3. With finiteDx, the second impact is made wit
an additional time delay after the first one. Eventually, t
additional time delay makes the two solitons have larger
tial spatial distance as compared with the no-gap case
magnified picture~d! with resolution the same as~b! shows
that there are much smaller but still noticeable second
waves.

It was reported that when two oppositely directed iden
cal solitons collide in the center of the chain, there app
secondary solitons which are weaker in magnitude and m
slower than the primary ones@6#. Our results show that the
generation of this secondary soliton is a general phenome
which does not require two oppositely directed identical s
tons. Only a slight touching of two propagating solitons
sufficient. In Fig. 5, the velocities of the two solitons a
proach that of a single soliton asDx12(t50) increases. But
the distance required for the solitons to reach their final
locity becomes longer. This implies that the repulsive int

FIG. 4. ~a! The propagation of two compression waves after t
spheres collide with the chain with initial gapDx12(t50)50. ~b!
Magnified picture of~a!. ~c! Except forDx12(t50)50.3, the other
conditions are the same as~a!. ~d! Magnified picture of~c!.

FIG. 5. As the initial gapDx12(t50) increases, all the velocitie
of solitons approach the value for the one-ball collision case.
upper one is the first generated soliton, and the lower one is
second generated one.
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action is decreased as the separation of the two solitons
creases.

C. Beats in energy

We checked the energy and momentum conservation
our numerical study. The total energy and momentum
conserved as expected. We find, however, oscillations in b
the kinetic and potential energies. Figure 6~a! shows the ki-
netic energy oscillation during the propagation of a solit
along the chain. As previously mentioned, the boundary
fect which appears as a transient part in the oscillat
quickly fades out. The inset of the figure shows one f
period of steady oscillation. Figure 6~b! shows the velocity
profiles of the spheres at each time corresponding toa, b, and
c in Fig. 6~a!. Two consecutive spheres indexed as 21 and
have most of the positive velocity throughout the chain. T
constraint of momentum conservation,Spi5const, makes
the kinetic energy have its minimum value when the velo
ties are evenly distributed. In our example of Fig. 6~b!, the
more evenly distributed velocity profile which has a labeb
makes the total kinetic energy a minimum. The most une
distributions at pointsa and c correspond to the maximum
kinetic energy. This energy oscillation comes from the re
tive discreteness of the chain with respect to the wavelen
of the soliton. Until now, the continuum approximation an
analytic wave form analysis have not shown this discre
ness. Since the wiggle in energy occurs during the tim
takes for the maximum compression to pass over two a
cent spheres, the frequency of the kinetic energy oscilla
is related to the velocity of the soliton asc5 f l, wheref is
the frequency of the energy oscillation andl is the effective

e
e

FIG. 6. ~a! Kinetic energy of the chain along which a solito
propagates. The inset is an expanded figure for one full cycle.~b!
Velocities of each of the spheres where the soliton passes at
different times corresponding toa, b, andc in ~a!.
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wavelength of the soliton in the energy transfer proce
From Fig. 6, we findl to be one grain diameter length whic
spans one or two grains.

This oscillation of kinetic energy also appears in t
propagation of two solitons. As we mentioned previous

FIG. 7. Beats of kinetic energy when two solitons propag
along the chain with four different initial conditions:~a! Dx12(t
50)50, ~b! Dx12(t50)50.1, ~c! Dx12(t50)50.2, and ~d!
Dx12(t50)50.3.
06660
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when two solitons propagate they have two different velo
ties, whether they had the same initial value or not. Th
different velocities will give rise to the oscillations of kineti
energy with different frequencies. Two neighboring fr
quency oscillations make beats as a function of the diff
ence in frequencies. Figure 7 shows the beats which are
erated during the propagation of two solitons.

IV. CONCLUSION

The multisoliton propagation problem in a linear Hertzi
system shows various effects which were not seen in
propagation of a single soliton. After the boundary effe
faded out, there exist some additional phenomena suc
secondary soliton generation, the repulsion of two solito
and a hierarchy in the velocity coefficient. We delineate th
as coming from the interaction between the two solito
And we find a kinetic energy oscillation, which comes fro
the discreteness of the granular chain. Two solitons of dif
ent velocities make beats. These oscillations and beats
generic to a granular chain.
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